Dougherty Valley HS Chemistry Acids & Bases – More Weak Acid/Base Practice

Name:

Period:

Seat#:

Worksheet #7

Directions:

- Show your work on binder paper!
- Some answers are provided at the end of the problem. They are underlined.

1) strong acid solution - 0.00125M HNO₃

- a. determine [H⁺]
- b. calculate pH 2.903
- 2) strong base solution 0.00125M KOH
 - a. determine [OH-]
 - b. calculate pOH
 - c. calculate pH <u>11.097</u>
- 3) weak acid solution -0.00125M HOCl Ka = 3.5×10^{-8}
 - a. determine [H⁺] using ICE box
 - b. calculate pH 5.18
- 4) weak base solution $-0.00125M \text{ NH}_3 \text{ Kb} = 1.8 \times 10^{-5}$
 - a. determine [OH⁻] using ICE box
 - b. calculate pOH
 - c. calculate pH <u>10.15</u>

For the following problems, assume the 5% rule for all (even if it may not apply) just so you can get some extra practice with the 5% rule.

- 5) Find the pH of 0.065 M formic acid. The acid dissociation constant (Ka) for formic acid is 1.8 x 10⁻⁴. 2.47
- 6) Find the pH of a 0.325 M acetic acid solution. $K_a = 1.8 \times 10^{-5}$. <u>2.62</u>
- **7)** Find the pH of a solution that contains 0.0034 M lactic acid ($K_a = 1.4 \times 10^{-4}$) and 0.056 M propionic acid ($K_a = 1.4 \times 10^{-5}$). <u>2.80</u>
- 8) What is the pH of a 0.00056 M butyric acid solution. $K_a = 1.5 \times 10^{-5}$. <u>4.04</u>

Challenge Problems (optional):

- Complete these and come show me if you get it correct I'll give you some tickets!
- 9) Diprotic acid solution Calculate the pH of 0.00125M H_2CO_3 Ka₁ = 4.2 x 10⁻⁷ Ka₂ = 4.8 x 10⁻¹¹
 - a. First dissociation assume all molecules lose one [H⁺]
 - i. Find [H⁺] with simple pH calculation
 - b. Second dissociation assume all molecules lose the second [H⁺]
 - i. Find [H⁺] using ICE box
 - c. Add [H⁺] from first and second dissociation
 - d. Calculate pH from the sum of all [H⁺]

10) Mixture of acid and base – Calculate the pH of 20.0 mL of 0.00125M HNO₃ + 30.0 mL of 0.00125M KOH

- a. calculate moles of H^+ and OH^-
- b. determine moles of excess H⁺ or OH⁻,
- c. determine total volume
- d. calculate [H⁺] or [OH⁻]
- e. calculate pH